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Applying Asymptotlc Shapes to Nonexponential Families

Gideon Schwarz

1. Introduction: Aymptotic Shapes and Fortus' Generalization.

Asymptotic shapes were introduced in an earlier paper (1962). They

arise as follows. First, mhen a statistical hypothesis Ho is to be

tested against an alternative HI, on the basis of sequentially sampled

independent observations that cost c units each, the optimal procedure

is related to the posterior stopping risk R. Nhen the latter reaches a

value less than c, the optimal (Bayes) procedure will obviously call

for stopping; for "separated" hypotheses, we have shown also (for some

c and K) that as long as R exceeds K c log 1, where c < co, the0 c

optimal procedure leads to taking another observation. For these facts,

that can be conveniently expressed as inclusions of events

(R < c] c (optimal procedure stops] c [R < K c log
c

no Nurther assumptions are required.

For the second step, the distribution of the observations were assumed

to form a (k-dimensional) exponential family. For this case, the three

events forming the chain of inclusions above can be interpreted as sets in

the (k+l)-dimensional space of S(Xl1 ) +'." + S(xn), the (k-dimensional)

sufficient statistic of the first n observations, with n itself fbrming

the k +first coordinate. It was then shown that, as c - 0, the two sets



at the ends of the chain grow at the rate of log -., and if this growth
C

is counteracted by shrinking them at that rate, both tend to the saie

limit-set, and hence, the same holds for the optimal stopping set sand-
1

wiched between them, if it too is rescaled by shrinking it log 1 - fold.
C

The limit-set is the asymptotic shape, and blowing it up back to log1
C

times its size yields an approximation to the optimal stopping set. In

terms of the generalized likelihood ratio statistic Ai for testing

Hi against its complement, the approximate stopping region is the set

where at least one of A0  and A, exceeds 1
Ac

Recently Fortus (1979) attempted to do away with the restriction

to exponential families. As those are characterized by the existence

of a vector valued statistic that is sufficient when summed over the

observationsFortus chose a function valued statistic to play a similar

role: the log likelihood function. In the linear (oo-dimensional) space

of these functions, with one dimension added for n, stopping regions

and regions of constant posterior risk are well-defined. The concept of
i 1

shrinking (by log 1) is meaningful here as well, and so asymptoticc
shapes are obtained, and the approximate procedure that results from

replacing the actual shape by the asymptotic shape is defined by Fortus

Ljust as in the exponential-family case, and can be expressed in terms of

A0  and Al here as well.

An important improvement added by Fortus to his generalization, is

the proof of local uniformity of the convergence of the scaled region to

its asymptotic shape.
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2. Interpreting the Convergence and its Uniformity.

In the exponential case, when the stopping risk R is regarded as

a function of E = S(XI) +-.. + S(Xn) and n, the domain of this function

consists properly of those pairs (Z,n) which are attained by some possible

sequence J..oXn . It is convenient to extend R to all pairs where

its formula is meaningful. We (1962) mentioned one part of this extension

(the inclusion of noninteger n values) but failed to mention that in

some cases, such as for integer-valued S, we assumed R to be defined

as if also S were real valued. Fortus (1979) proceeds likewise.

Only with the domain thus extended is the geometric description of

the various regions and shapes valid, and this must be kept in mind when

one attempts to evaluate one characteristic feature of the asymptotic

shapes method: as n tends to infinity, the mean sufficient statistic

Tn (equal E/n in the exponential case and the log likelihood divided

by n in Fortus' case) is held fixed.

For the convergence of the scaled regions to the asymptotic shape,

the fixing of Tn is merely a technical device, made appropriate by

the fact that the regions grow in all directions at the same asymptotic
1

rate of log - when c tends to zero. However, when the asymptoticc
shape is to be used in a real problem, where c is small but positive,

Tn will never be fixed as n increases, and the justification of using

the approximate procedure depends on two further results. One is the

local uniformity in Tn of the convergence. This result is new in

Fortus (1979) even for the exponential case. But, to utilize the local

uniformity in Tn for an evaluation of the asymptotic procedure, Tn

must be shown to remain in a set for which the uniformity is valid, as

sampling proceeds.
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For interior parameter points of an exponential family, the required

behavior of Tn is guaranteed by the law of large numbers: there Tn

is the mean of n independent identically distributed vectors S(Xi),

with finite moments of all orders; consequently it converges almost surely

to its expectation. In Fortus' case, Tn is function valued, and even

pointwise, Tn(e) may not converge. For E(T n(e)) is the Kullback-Leibler

distance between the uniform distribution and the distribution under e,

and this distance may be infinite. In such a case Tn will not stay in

a bounded set, and the uniformity will not apply.

We therefore add one condition to Fortus' assumptions: For X1,... ,Xn...

independent, distributed according to one of the distributions in the

parameter space, the mean log likelihood Tn(0IXl,...,Xn) stsys almost

surely in a set (of functions) that is bounded (in the metric

suplexp f-exp gi); or equivalently, the set

[exp(Tn(eIX,...,Xn)) - exp(m(e X

is almost surely bounded.

Thenever this condition holds, Fortus' description of the approximation

as "reasonable... for small c" can be justified by applying his uniformity

result. For the practical application, there is still the question how

small is "small".

3. The Second Order Correction to the Size.

At the end of his paper, Fortus quotes Fuhimi (1967), xho found

in numerical examples that for c = 10"8 the approximation is still



far from reasonable. The limitation imposed thereby on the application

is seen to be less severe if one considers that c is the cost of an

observation in units of the penalty for a wrong decision, and that

c = 10 - 8 , e.g., corresponds to sample sizes of the order of magnitude

of log 108, which is less than 20.

Fushimi proceeds to find a second order correction for the one-

dimensional normal case, with linear loss; subsequently we generalized

it to other one-dimensional exponential families and other loss functions

(1969), and also to some higher-dimensional exponential families (1971).

In one sense these results are incomplete: the second order corrections

for the two regions that flank the optimal region in the chain of

inclusions in Section 1 differ from each other asymptotically by
1

log log , and therefore the optimal region cannot be approximated

by .this method any closer than log log 1 . This is also the order of

magnitude of the correction term, so not much seems to be gained by

including it. Still, using it one can approximate the optimal stopping

1 1
region with an error term equal to 2 log log + 0(1), while without

it, the error contains higher multiples of the log log term, i.e. at

' least 3 log log I in the case treated by Fuihimi. Since the regions2 c

are in (E,n)-space, the error mentioned above corresponds to an error
1 1

proportional to log log - in sample size, or to c log log - in cost. Inc c

either description, the relative error is asymptotically (-log logL)/log!.
2

For the one-dimensional case with losses proportional to the squared

distance from the indifference region, the relative error would be

five times as large, if the second order correction were ignored (see

figure).
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For applications, the second order correction is clearly of crucial

importance. Since it varies with the dimension of the exponential family,

no one form will do for the general case. In fact, since it grows propor-

tionally with the dimension, it appears most necessary, yet least accessible

when the dimension becomes infinite, as it may be under Fortus' assumptions.

It can be salvaged, however, if we retain an assumption of finite-dimen-

sionality less stringent than that of an exponential family. In the latter,

the dimension of the parameter space is also the linear dimension of the

log densities. The second order correction terms generalizes under some

regularity assumptions to the case where the parameter space is Euclidean

k-space, as we now proceed to exemplify by the case k = 1.

So, we let e be real valued, and strengthen Fortus' continuity

assumption by requiring the likelihood function to be unimodal and to

possess bounded second derivatives, a condition that holds automatically

in the exponential case. Also, we assume the hypotheses to be half-lines

separated by a finite interval (e0,el), and the loss function to be

bounded, and to behave like le-ei 0 just outside the interval. Finally,

we assume an a priori density, bounded between positive numbers in every

finite interval.

Under these assumptions, the evaluation of the second order correction

in Schwarz (1969) goes through, and yields for the size factor by which to

blow up the asymptotic shape

log - (p +l+ )loglog-.
c -2 c
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Thus corrected, Fortush generalization yields an approximation appli-

cable in the case of a parametric family. For nonparametric problems,

though formally correct, the approximation cannot be corrected, and without

a correction it remains toorough to be of any practical value.

For exponential families, the gap between the constant-risk bounds

of the Bayes regions has been eliminated by Lorden (1967, 1977, 1980)

who showed that for appropriate M , the Bayes procedure does not stop
.

as long as R exceeds M c. This determines the correct sign preceding

the 1 in the last formula to be a minus, and reduces the relative
2

error to 0((log c-1 ) ). Hopefully this result, that is best possible

if full dependence on the prior is avoided, can also be extended

beyond exponential families.
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